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Multi-objective optimization problems (MOPs) with changing decision variables exist in
the actual industrial production and daily life, which have changing Pareto sets and com-
plex relations among decision variables and are difficult to solve. In this study, we present a
cooperative co-evolutionary algorithm by dynamically grouping decision variables to
effectively tackle MOPs with changing decision variables. In the presented algorithm, deci-
sion variables are grouped into a series of groups using maximum entropic epistasis (MEE)
at first, with decision variables in different groups owning a weak dependency.
Subsequently, a sub-population is generated to solve decision variables in each group with
an existing multi-objective evolutionary algorithm (MOEA). Further, a complete solution
including all the decision variables is achieved through the cooperation among sub-
populations. Finally, when a decision variable is added or deleted from the existing prob-
lem, the grouping of decision variables is dynamically adjusted based on the correlation
between the changed decision variable and existing groups. To verify the performance of
the developed method, the presented method is compared with five popular methods by
tackling eight benchmark optimization problems. The experimental results reveal that
the presented method is superior in terms of diversity, convergence, and spread of solu-
tions on most benchmark optimization problems.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

MOPs involve simultaneous optimization of two or more conflicting objectives [1,2]. In particular, an MOP with an
increasing or decreasing dimension of decision variables over time is one with changing decision variables. A multi-
period portfolio selection problem, for example, mainly addresses how to rationally allocate limited funds to various finan-
cial assets to balance the maximal return and minimal risk in a number of consecutive periods [3,4]. Owing to the changing
market environment, the types and proportions of invested securities in each period are adjusted according to the current
market environment. In the above process, investors are likely to hold on some of their existing assets while selling bad
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assets and/or buying new ones with higher returns. If assets to be sold/bought are regarded as the decision variables when
formulating the portfolio selection problem, it becomes a problemwith changing decision variables. Specifically, it is an MOP
with changing decision variables.

The changing of decision variables will result in a changing Pareto-optimal set (PS) for an optimization problem. There-
fore, an MOP with changing decision variables can be regarded as a type of dynamic multi-objective optimization problem
(DMOP) [2,5]. An approach of effectually tackling a DMOP needs to conquer difficulties raised by changing conditions within
an optimization problem, such as following up a time-dependent Pareto front (PF) and offering solutions with good diversity.
To this end, Deb et al. introduced diversity by randomly initializing a population or conducting the mutation operator on
certain solutions chosen from the population [6]; Liang et al. incorporated a hybrid of memory and prediction strategies into
a multi-objective evolutionary algorithm based on decomposition (MOEA/D) [7], in which a differential prediction is
employed to relocate the population individuals in the new environment if a detected change is dissimilar to any historical
changes, and a memory-based technique devised to predict the new locations of the population members is applied if a sim-
ilar environment exists in the historical changes. In [8], a dynamic multi-objective evolutionary algorithm driven by inverse
reinforcement learning is used to tackle the DMOPs. To accelerate the convergence and maintain the diversity of the evolu-
tionary population, a Q-learning-based change response approach is considered to generate solutions in the promising
regions; and [9] presented a multidirectional prediction strategy by clustering a population into several representative
groups to improve the performance of evolutionary algorithms (EAs) in solving a DMOP. Recently, Li et al. provided a
dynamic two-archive EA to tackle DMOPs with a changing number of objectives [10]. Two complementary co-evolving pop-
ulations are simultaneously maintained to adaptively reconstruct their compositions once the environment changes and
interact with each other via a mating selection mechanism.

However, all these methods have not considered the case where the number of decision variables increases or decreases
over time. Although studies have been conducted on changing the number of decision variables for single-objective prob-
lems, such as [11,12], they consider different problems from those in our study. They aim to provide an approach for deter-
mining an optimal search dimension with a small population size when tackling a problem that has an infinite search
dimension. To this end, an evolutionary algorithm is first employed to address an optimization problemwith a small number
of decision variables. Then, the number of decision variables is gradually increased during the optimization. The increase in
search dimension is continued until performance cannot be improved within a certain number of generations after the
dimension increases. In this case, the search dimension is decreased by one and remains unchanged. Finally, an optimal
search dimension for a small population is provided. This indicates that the increasing or decreasing number of decision vari-
ables is only considered a strategy for solving the problem, which is not the characteristic of the problem. For a large-scale
MOP with changing decision variables, running the current optimization method based on a new population is inefficient
when a change in the number of decision variables is detected. Furthermore, producing a complete set of solutions to a
DMOP with a large scale of decision variables using previous methods often results in an insurmountable computational
complexity, suggesting their inefficiency in tackling an MOP with changing decision variables. Therefore, seeking appropriate
methods for an MOP with changing decision variables is critical, and it is the key focus of this study.

It has been shown that co-evolutionary mechanisms can significantlyimprove the efficiency of the optimization process
[2,13]. Because cooperative co-evolutionary algorithms (CCEAs) can significantly shrink the searching space of a sub-
population, they are efficient when solving a single-objective large-scale optimization problem [14–16]. In addition, CCEAs
have been employed in conjunction with other strategies to address MOPs and DMOPs. For example, Li et al. developed a
systematic way of incorporating the decision maker’s preference information into the decomposition-based evolutionary
multiobjective optimization methods [17]. Therefore, the search process is steered toward the region of interest for the deci-
sion maker directly or interactively. Moreover, to help decision makers identify solution(s) of interest from a given set of
trade-off solutions in an MOP, they presented a simple and effective knee point identification method from a decomposition
perspective [18]. The basic idea is to sequentially validate whether a solution is a knee point or not by comparing its localized
trade-off utility with others within its neighborhood characterized from a decomposition perspective. However, they decom-
posed the problems in the objective space, which is difficult to adapt to problems with changing decision variables. [19] pre-
sented a distributed CCEA by exploiting the inherent parallelism of cooperative co-evolution (CC), which divides an MOP into
several sub-problems based on the decision variables; each sub-problem contains only one decision variable and is opti-
mized by a sub-population. [20] proposed a dynamic competitive-cooperative co-evolutionary algorithm to address DMOPs,
where all the decision variables are adaptively classified into several groups and random competitors are utilized to track the
moving optima. Two approaches to large-scale multi-objective optimization were introduced in [21,22]. One is to solve an
MOP with many decision variables, called an evolutionary algorithm for large-scale many-objective optimization (LMEA),
which divides the decision variables into distance- and diversity-related groups using a clustering approach [21]. The other
is an MOEA based on decision variable analyses (MOEA/DVAs) for large-scale MOPs [22], which groups the decision variables
according to the contribution of a decision variable to convergence (i.e., the distance to the PF), diversity, or both. However,
many function evaluations are consumed before the optimization, especially for an optimization problem with numerous
decision variables. Furthermore, these studies can only provide the correlation between decision variables, and are mainly
suitable for decomposing decision variables of an optimization problem with separable objectives.

In recent years, researchers have proposed several novel grouping methods, such as differential grouping (DG), an
improved variant of DG (DG2), global DG (GDG), and recursive DG (RDG). The DG [23] method identifies the interaction
between decision variables by detecting the fitness changes when perturbing the decision variables. If the fitness change
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induced by perturbing decision variable xi varies for different value of xj; xi and xj interact. However, DG is sensitive to the
value of ewhich is a parameter of DG used for determining whether two variables are nonseparable. To overcome this defect,
DG2 [24] is proposed to adapt the value of e to the objective value of a problem and identify the complete variable interac-
tion matrix. Thus, the accuracy in identifying the interrelationship is improved. However, it may not need the entire variable
interaction matrix to identify the connected subcomponents. In theGDG [25] method, the same technique as that used in DG
is employed to identify the pairwise interactions between decision variables. The variable interaction matrix, also know as
the adjacency matrix of a graph, is calculated. Then, the depth-first search or breadth-first search is used to identify the con-
nected components. Note that both the interacting and conditionally interacting decision variables are placed into one con-
nected subcomponent. The computational cost of DG, DG2, and GDG for decomposing a D-dimensional problemis OðD2Þ. To
reduce the computational cost of the differential grouping methods, RDG examines the interrelationship between a pair of
sets of variables but not a pair of variables [26–28]. If two sets of variables (X1 and X2) are interrelated, RDG divides X2 into
two equal-sized subsets and examines the interrelationship between X1 and the two subsets. The computational complexity
is OðDlog2DÞ when RDG decomposes a D-dimensional problem in the above binary search fashion. Nevertheless, the men-
tioned grouping methods, DG, DG2, GDG, and RDG, which divide the decision variables offline, can not adapt to problems
associatedwith decision variable change. They lack a mechanism for adjusting the groups of decision variables as the opti-
mization problem varies.

Therefore, it is extremely challenging for CCEAs to tackle an MOPwith changing decision variables. The challenges include
the following: (1) how to examine the change in an environment, (2) how to adjust the groups of decision variables when the
environmental change occurs, and (3) how to respond to the environmental change. Bearing these challenges in mind, we
provided some preliminary results [29]. In [29], a framework of parallel cooperative co-evolution based on dynamically
grouping decision variables is proposed. With the Spearman rank correlation (SRC) analysis based on samples obtained from
the evolution of a population, the decision variables are partitioned into several groups, which dynamically adjust when a
change occurs. However, the samples have a significant influence on the above grouping results, causing inaccurate grouping
results and low reliability. Moreover, only the case of increasing decision variables is considered, which is not adequate.

In this study, we further extend the previous work. An MOP with one decision variable being increased or decreased at a
time is considered. Note that if more than one decision variable is changed simultaneously, we can handle them individually.
A CCEA is presented for tackling this optimization problem. In this study, a number of groups are gained at first based on the
relation among decision variables. As the dimension of decision variables increased or decreases, the interaction matrix (IM)
between a newly added decision variable or an old reduced decision variable and each group will be computed according to
information offered by the population to adjust the grouping of decision variables. Additionally, a hybrid strategy is
employed to initialize sub-populations as the dimension of decision variables varies.

Some new features different from the previous work are provided as follows.

(1) Employing a novel method to accurately group the decision variables.
(2) Proposing an improved strategy to respond the change of decision variables.
(3) Detailing the strategy of evaluating an individual of a sub-population.
(4) Employing four newmetrics to reflect the performances of the presented algorithm, and extending the experiments to
survey the influences of different strategies on the proposed algorithm, which are beneficial to enriching the experiments.

The remainder of this paper is structured as follows. A comprehensively review on the related work is provided in Sec-
tion 2. Section 3 details the proposed CCEA based on dynamically grouping decision variables. The experimental results are
reported and analyzed in Section 4. Finally, Section 6 concludes the whole study.
2. Related work

2.1. Characteristics of MOP with changing decision variables

The following multi-objective minimization problem with changing decision variables is considered:
min FðXðtÞÞ ¼ ðf 1ðXðtÞÞ; f 2ðXðtÞÞ; � � � ; f MðXðtÞÞÞ

s:t:
giðXðtÞÞ 6 0; i ¼ 1;2; � � � ; q
hjðXðtÞÞ ¼ 0; j ¼ 1;2; � � � ; s
XðtÞ 2 ½XminðtÞ;XmaxðtÞ�

8><
>:

ð1Þ
where f ð�Þ refers to a set consisting ofM objectives to be minimized, XðtÞ ¼ ðx1ðtÞx1;x2ðtÞx2; � � � ;xDðtÞxDÞ is the decision vec-
tor containing at most D decision variables with xkðtÞ being a control parameter (xkðtÞ ¼ 0 or 1;xkðtÞ ¼ 1 presents that the
k-th component, xk, is one of thedecision variables of the optimization problem at time t, and xkðtÞ ¼ 0 otherwise). gið�Þ 6 0
and hjð�Þ ¼ 0 represent the i-th inequality and the j-th equality constraints, respectively.

In problem (1), the dimension of decision variables will increase or decrease because the value of xkðtÞ changes along
with the environment. If the dimension of thedecision variables remains unchanged as parameter t changes, the problem
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will be considered a traditional constant DMOP [6]. For the above two types of optimization problems, their PS and PF will
change as a result of the environmental change. There are twofold differences between them. (1) The number of decision
variables of a traditional DMOP remains unchanged, whereas the MOP discussed in this study has changing decision vari-
ables, and the fluctuation in the number of decision variables causes a change in the relationship among decision variables.
(2) DMOPs have four types, i.e., Types I, II, IIII and IV [2,5]. However, for an MOP with changing decision variables, its true PS
always varies with the varying dimension of decision variables, that is, Type I and Type II. More precisely, the true PS changes
in the following two ways. First, similar to the true PS in Type III and Type IV,the true value of each original decision variable
does not vary, and the true PS varies because of the additional decision variable, denoted as Type I(A) or Type II(A). Second,
the true value of at least one original decision variable varies as the optimization problem varies, similar to the true PS in
Type I and Type II, denoted as Type I(B) or Type II(B). Compared with the traditional DMOP, the PS change of the problem
considered here is more complicated.

Therefore, it is hard for an algorithm to quickly track its optimal solutions because its PS varies with the dimension of the
decision variables.

2.2. Challenges of MOP with changing decision variables

As the dimension of thedecision variables increase, the optimal solutions of the original MOP are no longer optimal for the
new optimal problem. This is because the dimension of the optimal solutions of the original problem is insufficient and
infeasible for the new problem. More importantly, the optimal solutions of the original MOP change as the problem varies
( i.e., Type I(B) and Type II(B)), thereby causing the optimal solutions of the original problem to be unsuitable for the new
problem. When addressing the multi-period portfolio selection problem with limited funds, the investment proportion of
the original ones will inevitably decrease when a new asset is purchased, that the original portfolio needs to be adjusted.

In contrast, when the number of decision variables decreases, the optimal solutions to the original problem may change,
resulting in poor convergence of the original problem. For example, in the multi-period portfolio selection problem with lim-
ited funds, it is inevitable to increase the investment proportion of holdings after selling non-performing assets. It can be
noted that the original investment portfolio is not optimal for the new problem (i.e., the solution has poor convergence
performance).

2.3. Maximal information coefficient (MIC)

MIC computes the mutual information (MI) [30] between two variables at all sorts of scales and locates the greatest pos-
sible MI at any scale. Let E mean a set of ordered pairs, fðxi; yiÞ; i ¼ 1; . . . ;Ng;G represent an m� n grid covering E. That
represents dimensions x and y are divided into m and n intervals, respectively. The probability density function of a grid cell
is proportional to the number of data points inside that cell. The characteristic matrix MðEÞm;n means the highest normalized
MI of E with the m� n partition. Its definition is provided as follows.
MðEÞm;n ¼ maxðMIÞ
logminðm; nÞ ð2Þ
where max(MI) means the maximumMI of E by all possiblem� n partitions. The following is the definition for MIC of a set E.
MICðEÞ ¼ max
0<mn<BðNÞ

fMðEÞm;ng ð3Þ
where N refers to the size of sample, and BðNÞ ¼ N0:6 was given by Reshef et al. [31]. MICðEÞmeans the maximal value inMðEÞ
subjected to 0 < mn < BðNÞ.

3. The proposed algorithm

In this section, we present a CCEA based on dynamically classifying decision variables to efficiently handle an MOP with
changing decision variables. In the proposed method, we first divide all the decision variables into several groups. Then, we
adopt strategies to dynamically group decision variables and respond to the change when initializing sub-populations when
the decision variables change during the evolution. In addition, we present a clustering-based method of evaluating individ-
uals in a sub-population through cooperative co-evolution.

3.1. The Framework of the proposed CCEA

In this subsection, we present a cooperative co-evolutionary framework by combining the presented strategies into a con-
ventional MOEA. In the presented framework, the decision variables of an optimization problem are first classified into a
number of groups with decision variables in different groups owning weak dependency based on the strategy proposed
in SubSection 3.2. Then, a sub-population is employed to solve decision variables in every group. Subsequently, during
the cooperative co-evolution of sub-populations, a complete solution is formed using the strategy presented in SubSec-
tion 3.5, and its objective value is regarded as the fitness of an individual to be evaluated. The obtained non-dominated solu-
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tions are stored in the archive, AðtÞ. If the optimization problem changes in the number of decision variables, the method of
dynamically classifying decision variables and the mechanism of re-initialing sub-populations presented in SubSection 3.4
will be accordingly employed. The above process is repeated until a termination criterion set in advance is satisfied, and the
complete non-dominated solutions in AðtÞ are obtained. The pseudo code of the proposed framework is provided in
Algorithm1.

Algorithm1: Pseudocode of the proposed framework

In Algorithm1, the existing MOEA can be simply replaced by NSGA-II [32], SPEA2 [33], and MOPSO [34,35], with the pur-
pose of the resulted algorithms having improved performance in a variety of aspects.

3.2. Forming the initial groups of decision variables

It is crucial to divide decision variables into a number of groups when tackling a complex optimization problem using a
CCEA. The traditional grouping strategy based on the uniform partition method [36] does not consider the linkage relation-
ship between decision variables, and hence is inefficient when tackling a complex optimization problem. Clustering analysis
usually partitions the decision variables into a number of groups based on the Pearson correlation coefficient (PCC) [37] and
SRC [29]. PCC is incapable of reflecting nonlinear relationships, and SRC can only capture increasing or decreasing relation-
ships between decision variables. The groups obtained by them are not accurate because they both classify the decision vari-
ables based on the samples obtained from evolving populations, and different samples will result in different groups.
Therefore, we attempt to classify the decision variables replacedbased onaccording to the MEE, which is more reliable
and accurate than other grouping methods, such as PCC and SRC [38].

3.2.1. Measuring variable interaction with MIC
MEE classifies the decision variables by calculating the MIC. The process consists of the following two steps.
Step 1 Identifying direct interactions between decision variables according to the following Proposition 1 proposed by

[38].

Proposition 1. Let f : Rd ! R be a differentiable function. If lim
N!1

MIC @f=@xið Þ; xj
� � ¼ lim

N!1
MICðEÞ ¼ lim

N!1
max

0<mn<BðNÞ
fMðEÞm;ng ¼ 1,

xi and xj interact directly; if lim
N!1

MIC @f=@xið Þ; xj
� � ¼ lim

N!1
MICðEÞ ¼ lim

N!1
max

0<mn<BðNÞ
fMðEÞm;ng ¼ 0 , xi and xj interact indirectly or

are independent.

For Proposition 1, N means size of samples, and E is a set with N samples, which are randomly generated. It is able to
identify the direct interaction between decision variable pairs, xi and xj, in a differentiable function, f. Specifically, for a con-

tinuous optimization problem with its objective of f ðxÞ; @f=@xi can be approximated with f ðxiþdxiÞ�f ðxiÞ
dxi

. According to the above

proposition, Sun et al. provided an information matrix with direct interactions, IMd, by calculating a interaction degree, MIC
[38]. If MIC @f=@xið Þ; xj

� �
is greater than a threshold, a, then the corresponding entries of IMdði; jÞwill be set to 1, which means

that xi and xj directly interact with each other. Otherwise, IMdði; jÞ ¼ 0.
Step 2 Identifying indirect interactions between decision variables. This stage starts by constructing an interaction graph

according to IMd: setting each decision variable xi as a vertex, i; connecting vertices i and j if IMdði; jÞ ¼ 1. Then the breadth
first search algorithm is utilized to determine strongly connected components. Ultimately, all the pairs of vertices i and j in
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each identified strongly connected component are connected and the corresponding information matrix with direct or indi-
rect interactions, IMði; jÞ, are set to 1, which means that the decision variables xi and xj interact each other and will be clas-
sified into the same group. IMði; jÞ ¼ 0 means that xi and xj are independent.

Let us consider the following function as an instance.
f ðXÞ ¼ ðx1 þ x2Þ2 þ ðx2 � x3Þ2 þ x24;X 2 ½�1;1�4: ð4Þ

On the basis of the aforementioned method, we can obtain the IMd and the IM, respectively, as follows.
IMd ¼

� 1 0 0
1 � 1 0
0 1 � 0
0 0 0 �

2
6664

3
7775; IM ¼

� 1 1 0
1 � 1 0
1 1 � 0
0 0 0 �

2
6664

3
7775:
IMd shows that both fx1; x2g and fx2; x3g interact with each other, and IM reports that x1 and x3 are indirectly interacted,
which are linked by x2. Therefore, the decision variables are classified into two groups: fx1; x2; x3g and fx4g. Moreover, the
total number of evaluations for each objective is NDðD� 1Þ at the first stage of MEE, where N means the sample size and
D is the dimension of decision variables. In addition, the second stage of MEE does not consume any evaluations.

3.2.2. Forming the initial groups based on MEE
The above grouping method mainly focuses on single objective optimization problems, which cannot be applied directly

to MOPs. Therefore, to form the initial groups of the decision variables for an MOP, we first calculate the IMk
d for the kth

(k ¼ 1;2; . . . ;M) objective using the first stage of MEE. Then, all the IMk
d are utilized to structure the IMd using the following

formula.
IMdði; jÞ ¼ max
k¼1;2;...;M:

ðIMk
dði; jÞÞ: ð5Þ
Finally, the decision variables are classified based on the IM deduced from the IMd using the second stage of MEE.
The flow chart of forming initial groups of decision variables for an MOP with M objectives is depicted in Fig. 1.

To form the initial groups, we first calculate the IMk
d value for the kth ðk ¼ 1;2; . . . ;MÞ objective using the first stage of

MEE. Then, all the IMk
d value are employed to form IMd with formula (5). Finally, the initial groups of decision variables,

SX1; SX2; � � � ; SXK , are obtained based on the IM value deduced from the IMd value in the second stage of MEE.
Algorithm2 offers the pseudo code of the presented method of initial grouping the decision variables for an MOP.

Algorithm2: Forming initial groups
Fig. 1. Flow chart of forming initial groups of decision variables for an MOP.
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To illustrate the process of Algorithm2, consider the following two-objective problem as an example.
f 1ðXÞ ¼ ðx1 þ x2Þ2 þ ðx2 � 1Þ2 þ x23 þ x24
f 2ðXÞ ¼ x21 � ðx2 � 1Þ2 þ ðx2 � x3Þ2 � x24

(
ð6Þ
According to the proposed method, we can obtain IM1
d and IM2

d from f 1ðXÞ and f 2ðXÞ, respectively.
IM1
d ¼

� 1 0 0
1 � 0 0
0 0 � 0
0 0 0 �

2
6664

3
7775; IM2

d ¼

� 0 0 0
0 � 1 0
0 1 � 0
0 0 0 �

2
6664

3
7775:
Furthermore,
IMd ¼

� 1 0 0
1 � 1 0
0 1 � 0
0 0 0 �

2
6664

3
7775; IM ¼

� 1 1 0
1 � 1 0
1 1 � 0
0 0 0 �

2
6664

3
7775:
At last, the decision variables are classified into two groups: fx1; x2; x3g and fx4g based on the IM.
The proposed grouping method has the following threefold characteristics. Firstly, the objectives are indirect utilized

when generating the samples in MEE. Therefore, the interaction between decision variables obtained based on these samples
is credible. In addition, the proposed grouping method can provide the interaction degree between decision variables. The
larger the interaction degree between decision variables, the more interaction they have. Secondly, the proposed method
arranges decision variables with interaction into the same group, which significantly reduces the size of each subcomponent.
Finally, the proposed method is suitable for an optimization problem with both separable and non-separable objectives
owing to its capability to identify the function correlated decision variables into the same group.
3.3. Change detection

The environment has a significant influence on solving an MOP with changing decision variables because previous non-
dominated solutions may be dominated as the environment changes. Therefore, detecting whether or not the environment
changing is essential. (1) To alleviate the negative influence of the randomness, two randomly selected solutions are reeval-
uated to detect whether a decision variable adds or not. The steps are explained in detail as follows. First, we assume a new
environment and add a new decision variable to each randomly selected solution. The new decision variable is then assigned
with two stochastic values in its feasible region, through which each selected solution corresponds to two new solutions.
Finally, the fitness values of each selected solution and its corresponding new solutions are compared. If the fitness values
are different, the environment is detected as changed, that is, a new decision variable is added. (2) Otherwise, the process of
detecting whether a decision variable decreases or not is performed. For a randomly selected solution, we first disturb the
value of one decision variable at a time. Then the fitness values of the selected solution and the disturbed solution are com-
pared. If the fitness values are equal, (i.e. disturbing the value of the decision variable does not influence the fitness value)
the disturbed decision variable is decreased.
3.4. Strategy for response decision variables change

3.4.1. Strategy for response groups of decision variables
Owing to the variability of decision variables, a DMOP contains not only a varying PS but also a varying relationship

between decision variables. We assume that interaction between original decision variables remains unchanged. Under
these circumstances, only the relation between the newly added or decreased variables, as well as the original decision vari-
ables are considered. If we keep the initial groups unchanged and take the newly added decision variable as a new group, a
persistent part of building blocks with a close relation will be broken, resulting in an improper grouping. Further, regrouping
the decision variables causes more computational complexity. Therefore, it is more suitable to re-investigate the relation
among decision variables and further adjust groups when the problem changes. Accordingly, the burden of computation
is reduced, and also the historical information of sub-populations is fully utilized. Based on the grouping results, CCEA
can efficiently evolve in the subsequent generations, thereby reducing the time consumed in tackling the PS of a DMOP.
In view of this, we propose a dynamically grouping strategy based on MEE in this subsection.

Let D be the current number of decision variables. When a decision variable, say xDþ1 or xr , is added or decreased to the
optimization problem, the pseudo code of the dynamically grouping strategy is given in Algorithm3.
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Algorithm3: Dynamically adjust the groups of decision variables
Based on the above analysis, we can conclude that the computation complexity of MEE is greater than that of DG, DG2,
GDG and RDG, in the preliminary environment. However, it is more focused on the response speed of the algorithm as the
environmental change in the DMOPs. In Algorithm3, only the MIC between the newly added or decreased and the original
decision variables are calculated to adjust the groups of decision variables. For each objective function, the maximum num-
ber of evaluations for dynamically adjusting groups of decision variables is 2ND, which is 2=ðD� 1Þ of that of regrouping
decision variables. Therefore, the computational burden of adjusting groups is lower than that of regrouping, which will
accelerate the response speed of the environmental change. From this perspective, the proposed grouping method outper-
forms the existing methods, i.e., DG, DG2, GDG and RDG, which require regrouping the decision variable as the environment
changes. Hence, the grouping method in this study is better adapted to the optimization problems with changing decision
variables.

3.4.2. Strategy for response optimization sub-population
The PF of an optimization problem may change significantly with the change in decision variables. In this case, utilizing

information provided by the population is beneficial in accelerating the convergence of an algorithm. When tackling DMOPs,
researchers have proposed various methods that efficiently utilize historical information, such as the mutation strategy [2],
and the approach of predicting the PF [9,39]. Nevertheless, these studies regard all the decision variables as a whole, and
predict them using the same strategy. For an MOP with changing decision variables, the changed decision variable has dif-
ferent influences on different decision variables. Therefore, the algorithm will have a low efficiency if all the decision vari-
ables are predicted using the same strategy.

To this end, we present a method of responding to varying decision variables, which initializes sub-populations corre-
sponding to different groups using different numbers of individuals in the archive. Specifically, for groups that are not
affected by the newly added or decreased decision variable, we initialize the corresponding sub-populations by employing
individuals in the archive with a high proportion, g, as these groups have a weak correlation with the changed decision vari-
able. For other groups, we initialize their sub-populations by utilizing individuals in the archive with a low proportion, such
as 0.5g. Moreover, we employ the following Gaussian perturbation operator to improve the diversity of each sub-population:
xiðt þ 1Þ ¼ aiðtÞ þ eðtÞ ð7Þ

where xi t þ 1ð Þ refers to the i-th individual at time t + 1. ai tð Þ represents the i-th non-dominated solution randomly chosen
from the archive, AðtÞ. eðtÞ � N 0;r2ðtÞI� �

is a Gaussian noise which is employed to promote the diversity of the population, I

is an identity matrix, and r2ðtÞ is the variance, and r2ðtÞ ¼ 1
n�1

Pn
j¼1ðaj � �aÞ2; aj 2 AðtÞ; �a and n are the mean and the size of the

individuals in AðtÞ, respectively. It should be noted that an initial individual, xiðt þ 1Þ, merely utilizes a part of information of
aiðtÞ in (7), which corresponds to the decision variabes in the group to be optimized. For the other individuals in each of these
sub-populations, they are re-initialized.
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3.5. Evaluating Individuals of a sub-population

According to the approaches to choosing representative solutions, previous methods of evaluating individuals of a sub-
population can be divided into the following two varieties. The first are random approaches, which randomly select repre-
sentative solutions from either one or more sub-populations or the archive. Following that, the selected solutions are utilized
to constitute one or more complete solutions, together with the individual to be evaluated. If the number of complete solu-
tion is more than one, the best one will be chosen, and its objective values will be regard as the fitness of the individual to be
evaluated. Typical methods include the CCEA for dynamic multi-objective optimization problems [2,40]. Although the
stochastic methods can maintain diverse sub-populations, they have a deteriorating performance in convergence due to
the random selection of representative solutions.

The other category of approaches are preference-based methods. These approaches select representative solutions based
on both Pareto domination and the distribution of individuals. For instance, [36] attempted to select a particle with a low
rank and a small niche size as the representative solution. The fitness of an individual is calculated according to its contri-
bution to the optimization problem and the dominance relation. For the preference-based methods, however, calculating the
distribution of representatives is often computationally expensive.

To overcome the above limitations, we present a simple and efficient strategy for selecting representative solutions, in
which the selection of a representative solution is based on clustering. In the proposed strategy, individuals in the other
sub-populations are first divided into Kclusters with k-means clustering. Then, a representative individual is randomly
selected from each cluster of the other sub-populations. Finally, for the individual to be evaluated, only Kcomplete solutions
are formed by randomly combining it with the representative individuals in the other sub-populations. The objective values
of the Kcomplete solutions are compared, and the best one is considered as the fitness of the individual to be evaluated. In
addition, the obtained optimal solution is saved in the archive.

Figs. 2(a) and (b) demonstrate the course of choosing the representative individual for the case of 3 sub-populations. In
Fig. 2(a), the decision variables are first classified into the following 3 groups: SX1 ¼ ðx11; x12; � � � ; x1n1 Þ; SX

2 ¼ ðx21; x22; � � � ; x2n2 Þ, and
SX3 ¼ ðx31; x32; � � � ; x3n3 Þ. Then, the sub-populations, P1; P2; andP3, are utilized to optimized them, respectively.

Fig. 2(b) shows the method of evaluating an individual in P1 when K ¼ 3. Taking the i-th individual in P1, i.e. p1i, as an
example, the individuals in P2and P3are first divided into K ¼ 3clusters. Then, 3 representative individuals, p2j1 ; p2j2 and

p2j3 , are randomly selected from each cluster of P2, respectively. Similarly, p3q1 ; p3q2and p3q3 , are selected from P3. Finally,

3 complete solutions are formed by randomly combining p1i with the representative individuals p2j1 ; p2j2 ; p2j3 in P2and

p3q1 ; p3q2 ; p3q3 in P3, e.g., s1 ¼ ðp1i; p2j1 ; p3q3 Þ; s2 ¼ ðp1i; p2j2 ; p3q1 Þ; s3 ¼ ðp1i; p2j3 ; p3q2 Þ. The objective values of s1; s2, and s3 are com-
pared, and the best one, e.g., s1, is regarded as the fitness of p1i.

3.6. Complexity of the proposed algorithm

The major difference between NSGA-II and the proposed MEE-NSGA-II in each generation lies in grouping the decision
variables, detecting the environmental change, responding the change, cooperatively co-evolving each sub-population,
and forming the archive. Assume that there are q sub-populations with their size of P=q (P is the total size of the population)
to cooperatively co-evolve when tackling an optimization problem with Mð� 2Þ objectives, N samples and D decision vari-
ables. The computational complexity associated with each of the above strategies is provided as follows:
Fig. 2. Process of evaluating an individual in a sub-population.
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(1) grouping the decision variables is OðMND2Þ,
(2) detecting the environmental change is OðDÞ in the worst case,
(3) responding to the change is OðDÞ,
(4) cooperatively co-evolving all sub-populations is OðPÞ, and
(5) forming the archive is OðMP2Þ.

The number of decision variables and samples, D and N, is smaller than the size of the population, P. Therefore, the overall
complexity of the proposed algorithm is OðMP2Þ, equal to NSGA-II [32]. From this viewpoint, MEE-NSGA-II is computation-
ally efficient.

4. Experimental study

To illustrate the superiority the presented algorithm, we carry out the following four groups of experiments. The first
demonstrates the effects of different changing frequencies and grouping strategies. The MEE-based grouping method is com-
pared to k-means clustering with feature measured by PCC and SRC, the uniform grouping [36], and no grouping methods
(NSGA-II) [32] with different changing frequencies. The second evaluates the influences of the proposed strategy for selecting
representative solutions. The third one incorporates the proposed strategies with two state-of-the-art algorithms i.e. SPEA2
[33] and MOPSO [41], and compare themwith the two state-of-the-art algorithms. The last one compares the proposed algo-
rithm, MEE-NSGA-II, with MOEA/DVA [22] and LMEA [21] on large-scale DMOPs.

4.1. Benchmark optimization problems

In this work, we mainly focus on a type of DMOPs in which the dynamics is caused by changing the number of decision
variables. However, the dynamics of the problems mentioned in [2] is caused by environmental changes. If incorporating the
two characteristics, changing the number of decision variables and environments, into a DMOP, it becomes more complex.
ZDT and DTLZ are two static and continuous suites which can be extended to any number of decision variables. Therefore, we
select two well-defined test suites, improved ZDT [42] and DTLZ [43], as the benchmark optimization problems, and denote
them as DMOP1-DMOP8. To evaluate the performance of the proposed method, we take two- and three-objective optimiza-
tion problems with various characteristics into consideration, such as linear, concave, non-concave, multi-modal, and dis-
connected (biased, or degenerate), which are summarized in Table 1 of the Supplementary material.

4.2. Performance metrics

We employ the generation distance (GD) [2,40], spacing (SP) [1,44], maximum spread (MS) [44], inverted generation dis-
tance (IGD) [45,46], and hyper-volume (HV) [39,47] to measure various performances of the proposed algorithm/strategy. To
make them suitable for DMOPs, their improved versions, named as MGD, MSP, MMS, MIGD [2,39] and MHV [39], are treated
as the performance metrics. Among them, the MGD metric means of the GD values in a number of time steps for each run,
with its expression being as follows.
MGD ¼ 1
Tj j

X
t2T

GDðPt�; PtÞ ð8Þ
where T refers to a set of time steps for each run, with its cardinality being, Tj j. Pt� represents a number of uniformly dis-
tributed Pareto optimal points in the true PF, and Pt is an approximation of PF. Similarly, we have the meaning of MSP,
MMS, MIGD, and MHV.

Among these metrics, MGD and MSP measure the convergence and the diversity of a solution set, respectively. MGD = 0
represents the achieved optimal solutions are located at the true PF. MSP = 0 means the achieved solution set is homoge-
neous distribution.

MMS refers to howwell the true PF is covered by the achieved PF, and a larger value of MS in the interval of [0, 1] reflects a
better extent (or spread) of the optimal solutions. Both MIGD and MHV can measure the performances of an algorithm in
convergence and diversity, and the larger (smaller) the value of MIGD (MHV), the worse the algorithm is.

When calculating the values of GD and IGD, a set of reference points with the uniform distribution on the PF is required.
5,000 reference points are employed for all the optimization problems. Moreover, ðz1; z2; � � � ; zMÞ is a reference point to cal-
culate HV, where zi is the maximal value of the i-th objective function of the true PF.

4.3. Compared algorithms and parameter settings

Particularly, the proposed strategies are compatible with any type of population-based optimization algorithms. As a case
study, five state-of-the-art MOEAs, NSGA-II, SPEA2, MOPSO, MOEA/DVA and LMEA, are chosen to verify our approaches. The
proposed strategies, MEE-base grouping CCEA and dynamically grouping, are incorporated with NSGA-II, SPEA2, MOPSO,
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called as MEE-NSGA-II, MEE-SPEA2 and MEE-MOPSO, respectively, for MOPs with decision variables changing one by one.
The three new algorithms, MEE-NSGA-II, MEE-SPEA2 and MEE-MOPSO, are compared with NSGA-II, SPEA2, MOPSO,
MOEA/DVA and LMEA in our experiments.

Additionally, to verify the superiority of the MEE-based grouping method, we compare MEE-NSGA-II with a cooperative
co-evolutionary NSGA-II based on k-means clustering with feature measured by the Pearson correlation coefficient between
decision variables, denoted as PCC-NSGA-II, and by the Spearman rank correlation coefficient, denoted as SCC-NSGA-II [29],
and uniform grouping-based [36] cooperative co-evolutionary NSGA-II, denoted as UCC-NSGA-II.

These selected algorithms are popular and show good performance in static environments. Meanwhile, the grouping
methods cover main categories mentioned in Section II for MOPs.

With regard to NSGA-II and SPEA2, the simulated binary crossover and the polynomial mutation operators are adopted
with their distribution indexes of 20. The crossover and mutation probabilities are 0.9 and 0.1, respectively. The termination
criterion is that the number of evaluations reaches to a value predefined in advance, i.e. 600,000 for all the algorithms. The
size of each of the populations is set to 50 for all the compared algorithms. A complete solution is made up by the method
proposed in SubSection 3.5 to evaluate an individual for all these algorithms. For k-means clustering, the number of clusters,
K, i.e. the size of representative individuals, is set to 3 considering the computational complexity and the conclusion in [40]. a
in Proposition 1 is set to 0.2 [38]. Besides, the parameter settings for the MEE- and SCC-based algorithms are the same as
those in the original studies [29,38]. MOPSO and MEE-MOPSO take an inertia weight of 0.4 and a mutation rate of 0.5 [41].

For each optimization problem, t ¼ 1
nt

s
st

j k
, where nt and st are the severity and frequency of a change, respectively, and sis

the maximal number of iterations. To investigate the influences of the change frequency on algorithms’ ability in tracing
dynamic environments, we only set nt ¼ 1 and let st vary due to reasons given in Sections 1 and 4.3. Specifically, we set
(nt ; st)=(1, 15), (1, 20), and (1, 25), and s =150, 200, and 250, respectively. The number of decision variables is set to 200
in the experiments except as otherwise noted. To study the influences of the strategy for selecting representative solutions,
(nt ; st) is set as (1, 25) and s =250.

Each algorithm runs independently 30 times on each benchmark problem, and the algorithm is terminated when
t > 10associate with the above settings of the frequency, showing that there are ten varies in total for every DMOP. The aver-
age and standard deviation of each metric over 30 runs are computed before the optimization problem varies. In addition,
the Wilcoxon rank-sum test at the significant level of 0.05 is engaged.

4.4. Grouping accuracy of the proposed grouping method over time

To illustrate the grouping accuracy of the proposed grouping method over time, the situation, ðnt ; stÞ=(1, 25), five varies
for the environmental change, the number of decision variables is 20, are taken as an example. Recall defined in [38] is used
to measure the grouping accuracy over time, including the initial grouping and the adjustment during the process.

Table 1 lists the experimental results when the proposed grouping method is utilized to group the decision variables in
the 8 benchmark functions. Then, the following concludes can be obtained. In the initial stage (t = 0), the grouping method
obtains the maximum value of Recall on most of the benchmark functions except on DMOP6. Furthermore, it achieves best
scores on DMOP1, DMOP2, DMOP3, and DMOP5 over time. The scores on DMOP4, DMOP6, DMOP7, and DMOP8 are little less
than 1 at some moments, especially on DMOP6, DMOP7 and DMOP8. The cause might be the error of calculation. There are
three objectives for DMOP6, DMOP7 and DMOP8, which will increase the complexity in grouping the decision variables. In
summary, the proposed grouping method is able to accurately decompose the changing decision variables over time. Table 1.

4.5. Influences of different changing frequencies

Table 2 lists the mean and standard deviation values of MIGD and MHV achieved by MEE-NSGA-II and the other five com-
pared algorithms with (nt ; st)=(1, 15), (1, 20), and (1, 25). The following observations can be obtained.

(1) The MIGD values of the compared algorithms except NSGA-II become small on almost all the test problems with the
increase of the changing frequency. In addition, NSGA-II has a great fluctuation in MIGD with various changing frequen-
Table 1
Grouping accuracy of the proposed grouping method on 8 benchmark functions in terms of Recall over time.

Fun. 0 1 2 3 4 5

DMOP1 1.00 1.00 1.00 1.00 1.00 1.00
DMOP2 1.00 1.00 1.00 1.00 1.00 1.00
DMOP3 1.00 1.00 1.00 1.00 1.00 1.00
DMOP4 1.00 1.00 1.00 0.98 0.99 1.00
DMOP5 1.00 1.00 1.00 1.00 1.00 1.00
DMOP6 0.98 0.96 0.99 0.95 0.95 0.96
DMOP7 1.00 0.98 0.95 0.96 0.98 0.98
DMOP8 1.00 1.00 0.99 0.98 0.99 1.00
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Table 2
Performance comparisons of different grouping strategies with different change frequencies.

Problem (nt ; st) MIGD MHV

NSGA-II PCC-
NSGA-II

UCC-
NSGA-II

SCC-
NSGA-II

MEE-
NSGA-II

NSGA-II PCC-
NSGA-II

UCC-
NSGA-II

SCC-
NSGA-II

MEE-
NSGA-II

DMOP1 (1, 15) 0.0094 0.0079 0.0106 0.0078 0.0073 0.9027 0.9192 0.9019 0.9201 0.9202
(0.0010)y (0.0011) (0.0017)y (0.0010) (0.0011) (0.0954)y (0.0989) (0.0956)y (0.0985) (0.0984)

(1, 20) 0.0087 0.0075 0.0097 0.0078 0.0073 0.9165 0.9194 0.9101 0.9197 0.9202
(0.0038)y (0.0008) (0.0012)y (0.0018) (0.0011) (0.0968) (0.0995) (0.0970) (0.0991) (0.0986)

(1, 25) 0.0070 0.0073 0.0077 0.0068 0.0062 0.9697 0.9694 0.9683 0.9709 0.9821
(0.0001) (0.0007) (0.0001)y (0.0001) (0.0001) (0.0002)y (0.0003)y (0.0006)y (0.0003)y (0.0002)

DMOP2 (1, 15) 0.0075 0.0080 0.0097 0.0068 0.0069 0.2521 0.3208 0.2374 0.3255 0.3258
(0.0014) (0.0009)y (0.0023)y (0.0006) (0.0008) (0.0644)y (0.0026) (0.0817)y (0.0017) (0.0014)

(1, 20) 0.0077 0.0074 0.0087 0.0066 0.0064 0.2981 0.3220 0.2906 0.3258 0.3251
(0.0017)y (0.0008) (0.0032)y (0.0006) (0.0005) (0.0259)y (0.0021) (0.0453)y (0.0016) (0.0018)

(1, 25) 0.0069 0.0070 0.0074 0.0073 0.0062 0.3226 0.3243 0.3116 0.3239 0.3251
(0.0001) (0.0001) (0.0002)y (0.0001)y (0.0002) (0.0005)y (0.0006) (0.0006)y (0.0001) (0.0003)

DMOP3 (1, 15) 0.0107 0.0104 0.0116 0.0103 0.0092 0.7560 0.7713 0.7506 0.7718 0.7765
(0.0028)y (0.0010) (0.0023)y (0.0009) (0.0009) (0.0218)y (0.0028) (0.0302)y (0.0025) (0.0025)

(1, 20) 0.0088 0.0091 0.0105 0.0102 0.0090 0.7712 0.7760 0.7688 0.7753 0.7764
(0.0026) (0.0008) (0.0012)y (0.0039)y (0.0007) (0.0078) (0.0030) (0.0105) (0.0023) (0.0026)

(1, 25) 0.0090 0.0093 0.0095 0.0094 0.0083 0.7770 0.7760 0.7751 0.7760 0.7786
(0.0001)y (0.0002)y (0.0002)y (0.0002)y (0.0001) (0.0002)y (0.0003)y (0.0005)y (0.0005)y (0.0003)

DMOP4 (1, 15) 0.4904 0.3847 0.3831 0.3638 0.3578 0.3501 0.5450 0.5309 0.7158 0.7200
(0.0388)y (0.0461)y (0.0442)y (0.0401) (0.0469) (0.2346)y (0.3029)y (0.2272)y (0.0969) (0.0986)

(1, 20) 0.4238 0.3524 0.3871 0.3591 0.3509 0.3891 0.5952 0.5842 0.6951 0.7166
(0.0372)y (0.0434)y (0.0384)y (0.0404) (0.0512) (0.2424)y (0.2840)y (0.2339)y (0.1102)y (0.0969)

(1, 25) 0.4545 0.3769 0.3914 0.2410 0.4390 0.2739 0.5328 0.5805 0.7675 0.7611
(0.0170) (0.0330) (0.0881) (0.0341)y (0.0410) (0.0170)y (0.0140)y (0.0937)y (0.0190) (0.0002)

DMOP5 (1, 15) 0.0454 0.1130 0.0521 0.0442 0.0496 0.2138 0.2235 0.2101 0.2638 0.2635
(0.0253) (0.0255)y (0.0240)y (0.0110) (0.0173) (0.0431)y (0.0775)y (0.0487)y (0.0012) (0.0011)

(1, 20) 0.4562 0.0585 0.0417 0.0496 0.0493 0.2150 0.2533 0.2216 0.2630 0.2636
(0.0248)y (0.0408)y (0.0197) (0.0174)y (0.0176)y (0.0622)y (0.0271) (0.0510)y (0.0019) (0.0010)

(1, 25) 0.0422 0.0410 0.0415 0.0416 0.0359 0.2563 0.2575 0.2569 0.2580 0.2671
(0.0039)y (0.0002)y (0.0001)y (0.0001)y (0.0001) (0.0061)y (0.0004)y (0.0003)y (0.0003)y (0.0002)

DMOP6 (1, 15) 0.1933 0.2378 0.1944 0.1725 0.1472 0.0461 0.0280 0.0206 0.0452 0.0469
(0.0449) (0.1478) (0.0712) (0.0629)y (0.0274) (0.0094) (0.0026)y (0.0051)y (0.0120) (0.0203)

(1, 20) 0.1767 0.2155 0.1821 0.1834 0.1448 0.0437 0.0310 0.0430 0.0412 0.0471
(0.0468)y (0.1292)y (0.0510)y (0.0646)y (0.0266) (0.0138)y (0.0027)y (0.0094) (0.0227)y (0.0105)

(1, 25) 0.4115 0.2311 0.1367 0.1229 0.1052 0.0085 0.0461 0.0293 0.0620 0.0615
(0.0210)y (0.0260)y (0.0280)y (0.0130) (0.0101) (0.0008)y (0.0008)y (0.0019)y (0.0007) (0.0030)

DMOP7 (1, 15) 0.0891 0.0842 0.0993 0.0808 0.0769 0.5838 0.6054 0.5710 0.6561 0.6421
(0.0100)y (0.0076)y (0.0106)y (0.0084)y (0.0070) (0.2467)y (0.2427) (0.2548)y (0.2457) (0.2395)

(1, 20) 0.0833 0.0809 0.0957 0.0812 0.0768 0.6030 0.6265 0.5934 0.6396 0.6549
(0.0083)y (0.0070) (0.0102)y (0.0081)y (0.0072) (0.2466)y (0.2411) (0.2401)y (0.2465) (0.2471)

(1, 25) 0.0894 0.0818 0.0919 0.0883 0.0831 0.7207 0.7290 0.7377 0.7437 0.7847
(0.0009) (0.0007) (0.0009) (0.0011) (0.0007) (0.0110)y (0.0072)y (0.0134)y (0.0026)y (0.0027)

DMOP8 (1, 15) 0.5651 0.7467 0.9780 0.5640 0.5471 0.0062 0.0025 0.0083 0.0742 0.0604
(0.0799)y (0.0680)y (0.0529)y (0.3369)y (0.0909) (0.0017)y (0.001)y (0.0045)y (0.0098) (0.0154)y

(1, 20) 0.5301 0.6978 0.9149 0.5276 0.5137 0.0061 0.0027 0.0093 0.0791 0.0861
(0.0551)y (0.0590)y (0.0545)y (0.3200)y (0.0738) (0.0185)y (0.0011)y (0.0080)y (0.0158)y (0.0094)

(1, 25) 0.5762 0.6897 0.9070 0.5237 0.5012 0.0026 0.0034 0.0041 0.0489 0.0781
(0.0680)y (0.0410)y (0.0190)y (0.0270)y (0.0280) (0.0023)y (0.0031)y (0.0030)y (0.0093)y (0.0081)
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cies. These indicate that the co-evolutionary algorithms have good performance in convergence and distribution with var-
ious changing frequencies.
(2) MEE-NSGA-II greatly improves the performance in convergence and distribution of NSGA-II on almost all test prob-
lems with various changing frequencies, suggesting that NSGA-II with the grouping strategy has good performance in
convergence and distribution on the premise of tracing dynamic environments.
(3) For DMOP1, DMOP3, and DMOP8, MEE-NSGA-II achieves better performance in terms of the MIGD metric than the
other co-evolutionary algorithms with various changing frequencies, especially, it is significantly superior to UCC-
NSGA-II. For DMOP2, DMOP6, and DMOP7, MEE-NSGA-II obtains better performance in terms of MIGD in two out of three
change frequencies than the compared algorithms, indicating that the proposed grouping strategy is more effective than
its counterparts.
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(4) For DMOP5 with all the frequencies of the environment change, MEE-NSGA-II has slightly worse performance for the
MIGD metric than UCC- and SCC-NSGA-II.

From data on the right columns of Table 2, we can achieve similar observations for the MHV metric.

4.6. Influences of different grouping strategies

Furthermore, the situation, (nt ; st) =(1, 25), is taken as an example to analyze the influences of different grouping strate-
gies. The following observations can be achieved from Table 2, where data outside/in the bracket are the means/standard
deviations of metrics, bold type ones are the greatest among these methods, and those labeled as ‘y’ mean that results
acquired between two exists are significantly different at the significant level of 0.05.

(1) For DMOP1 and DMOP2, with the help of the proposed grouping strategy, MEE-NSGA-II performs the best, followed by
NSGA-II, SCC-NSGA-II, PCC-NSGA-II, and UCC-NSGA-II. Although there is no significant difference in terms of MIGD
between MEE-NSGA-II and NSGA-II, NSGA-II obtains a lower MHV value. Additionally, for DMOP1 and DMOP2, NSGA-
II significantly outperforms PCC-NSGA-II, and UCC-NSGA-II in terms of MIGD, indicating that an inappropriate classifying
method is likely to deteriorate the performance of an algorithm.
(2) MEE-NSGA-II is significantly superior to the other four on DMOP3, DMOP5, and DMOP8. Taking DMOP8 as an exam-
ple, MEE-NSGA-II has the MIGD value of 0.50120, which is better than NSGA-II(0.57620), PCC-NSGA-II(0.68970), UCC-
NSGA-II(0.9070), and SCC-NSGA-II(0.5237), suggesting that MEE-NSGA-II has better performance in terms of distribution
and convergence.
(3) For DMOP4, SCC-NSGA-II achieves a better value of MIGD than MEE-NSGA-II, PCC-NSGA-II, and UCC-NSGA-II. How-
ever, there is no significant difference between MEE-NSGA-II and NSGA-II, PCC-NSGA-II, and UCC-NSGA-II. MEE-NSGA-
II has a larger value of MHV than NSGA-II and UCC-NSGA-II, and approximates that of SCC-NSGA-II.
(4) For DMOP6 which is a multi-modal optimization problem with plenty of local optima, MEE-NSGA-II achieves the best
performance on the MIGD metric. Moreover, MEE-NSGA-II significantly outperforms NSGA-II, PCC-NSGA-II, and UCC-
NSGA-II on MHV. Although the MHV value of SCC-NSGA-II, 0.06201, is bigger than that of MEE-NSGA-II, 0.06150, they
have no significant difference. The true PF of DMOP7 changes as the number of decision variables increases or decreases.
Hence, it is not easily tracked when the optimization problem varies. Although PCC-NSGA-II archives the lowest MIGD
value, each pair of algorithms has no significant difference with respect to MIGD. Furthermore, MEE-NSGA-II has the big-
gest value of MHV. Therefore, the presented method can handle DMOP6 and DMOP7 with good capability.

Furthermore, Fig. 3 depicts the curves of the IGD and HV values when tackling DMOP1-DMOP8 with (nt ; st) =(1, 25). We
have the following observations from this figure.

(1) For DMOP1, DMOP2, and DMOP3, four CCEAs show the similar performance in convergence and diversity with NSGA-
II. Nevertheless, the proposed algorithm obtains the minimal IGD values along with the change of the optimization prob-
lems, showing its excellence in tracking time-dependent PFs. In addition, the IGD values of the proposed algorithm have a
less fluctuation than those of the others, which emphasizes its powerful stability.
(2) For DMOP4, its PS and PF change over time. For this problem, UCC-NSGA-II achieves the best values of IGD and HV. As
the problem changes, the proposed algorithm shows the same good performance as UCC-NSGA-II, given the fact that their
slight difference in terms of IGD and HV values. NSGA-II, nevertheless, performs poorly since it employs no grouping
strategy, resulting in a low efficiency in tracking the true PF when the dimension of decision variables changes.
(3) For DMOP5, the proposed method is excel in robustness no matter how the optimization problem varies.
(4) Both DMOP6 and DMOP8 are three-objective optimization problems, with a great number of local optima. For these
two problems, all the four CCEAs gain a better performance than NSGA-II in terms of HV, and the proposed algorithm per-
forms best among them, with a smaller value of IGD than the others.
(5) DMOP7 is also a three-objective optimization problem, whose PS and PF change over time. When tackling this prob-
lem, MEE-NSGA-II achieves the best values of IGD and HV compared with SCC-NSGA-II, NSGA-II, and UCC-NSGA-II, and
approximates to that of PCC-NSGA-II in terms of HV, suggesting its excellent capability in solving DMOPs.

As mentioned above, we can draw the following conclusions: (1) the proposed algorithm, MEE-NSGA-II, has significant
advantages in convergence and distribution with the increase of the changing frequency, (2) grouping decision variables
is necessary when solving complex optimization problems, and (3) appropriate grouping strategy is beneficial to improving
CCEAs.

4.7. Influences of the strategy of selecting representative solutions

The proposed strategy of selecting representative solutions is compared with the random-based and preference-based
ones in this subsection. The proposed algorithm is employed to solve DMOP1, DMOP2, DMOP6, and DMOP7 based on the
above three strategies. MGD, MSP and MMS, which can specifically investigate the performance of an algorithm in a certain
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Fig. 3. Averages of IGD and HV over 30 runs versus time on DMOP1-DMOP8.
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aspect, are selected to investigate in detail the influence of different strategies for selecting representative individuals on the
performance of the proposed method. Table 3 lists the experimental results.
291



Table 3
Performance comparisons of different strategies of selecting representative solutions with (nt ; st)= (1, 25) and s =250

Problem Metric Random-based strategy Preference-based strategy Clustering-based strategy

DMOP1 MSP 0.0131 0.0116 0.0108
(0.0026)y (0.0028)y (0.0022)

MGD 0.0035 0.0022 0.0016
(0.0012)y (0.0013)y (0.0009)

MMS 0.9706 0.9944 0.9999
(0.0157)y (0.0148) (0.0152)

DMOP2 MSP 0.0102 0.01 0.0087
(0.0015)y (0.0021)y (0.0013)

MGD 0.0088 0.0057 0.0025
(0.0027)y (0.0016)y (0.002)

MMS 0.9879 0.9968 0.9676
(0.0165) (0.0126) (0.0104)y

DMOP6 MSP 0.0242 0.0195 0.0207
(0.0083)y (0.0058) (0.0067)

MGD 0.3534 0.2283 0.2308
(0.2522)y (0.1704) (0.1513)

MMS 1 1 1
(0) (0) (0)

DMOP7 MSP 0.0408 0.0404 0.0395
(0.0056) (0.0043) (0.005)

MGD 0.0258 0.0193 0.0158
(0.0028)y (0.0032)y (0.0038)

MMS 1 1 1
(0) (0) (0)
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Table 3 reports that, (1) The proposed clustering-based strategy obtains the best values of MSP and MGD in three of four
benchmark problems. For DMOP6, the minimal values of MSP and MGD obtained by the preference-based strategy are not
significantly different from those obtained by the proposed strategy. (2) All the three strategies have the best values of MMS,
1, for DMOP6 and DMOP7. For DMOP1, the proposed strategy significantly outperforms the random-based one in terms of
MMS. For DMOP2, the proposed strategy is slightly worse than the other two in terms of MMS.

In general, the proposed strategy has the best performance among all the three algorithms. That is, we can draw the fol-
lowing conclusions: the performances of the proposed algorithm in terms of diversity and convergence can be improved by
adopting the proposed cluster-based strategy of selecting representative solutions. Therefore, we choose MIGD and MHV as
the metrics to evaluate the performance of each algorithm in the subsequent experiments, because they can reflect the per-
formance of an algorithm in convergence and diversity.
4.8. Comparison with MOPSO and SPEA2

In this section, two proposed algorithms, MEE-MOPSO and MEE-SPEA2, are compared with MOPSO and SPEA2. Table 4
shows metrics MIGD and MHV in terms of the mean and standard deviation achieved by different algorithms on the
DMOP1-DMOP8.
Table 4
The experimental results in terms of the MIGD and MHV metrics of MOPSO, SPEA2, MEE-MOPSO and MEE-SPEA2

Problem MIGD MHV

MOPSO SPEA2 MEE-MOPSO MEE-SPEA2 MOPSO SPEA2 MEE-MOPSO MEE-SPEA2

DMOP1 0.0074 0.0075 0.0062 0.0071 0.8699 0.7831 0.8800 0.8702
(0.0003)y (0.0002)y (0.0001) (0.0003) (0.0003) (0.0003)y (0.0005) (0.0003)

DMOP2 0.0071 0.0070 0.0061 0.0070 0.3230 0.2925 0.3241 0.3243
(0.0002)y (0.0002)y (0.0001) (0.0003) (0.0005) (0.0003) (0.0007) (0.0007)

DMOP3 0.0093 0.0092 0.0054 0.0089 0.7754 0.6985 0.7773 0.7770
(0.0002)y (0.0002)y (0.0001) (0.0001)y (0.0006) (0.0004)y (0.0003) (0.0006)

DMOP4 0.3489 0.4891 0.4352 0.2021 0.2994 0.7212 0.6690 0.7608
(0.0930)y (0.0501)y (0.0226)y (0.0370) (0.0224)y (0.0218) (0.0990)y (0.0002)

DMOP5 0.0406 0.0412 0.0406 0.0406 0.2631 0.2368 0.2628 0.2632
(0.0001) (0.0026) (0.0001) (0,0001) (0.0003) (0.0002) (0.0010) (0.0042)

DMOP6 0.2354 0.3778 0.1203 0.0791 0.0323 0.0102 0.0574 0.0655
(0.0265)y (0.0264)y (0.0106)y (0.0042) (0.0039)y (0.0019)y (0.0035) (0.0014)

DMOP7 0.0882 0.0878 0.0827 0.0839 0.7487 0.6981 0.7806 0.7287
(0.0040) (0.0017) (0.0008) (0.0012) (0.0191) (0.0027)y (0.0034) (0.0106)

DMOP8 0.9313 0.4524 0.5487 0.3742 0.0101 0.0579 0.0660 0.0573
(0.1057)y (0.0873)y (0.0560)y (0.0221) (0.0072)y (0.0107) (0.0135) (0.0193)
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Table 4 reports that, with the help of the proposed grouping strategy, MEE-MOPSO and MEE-SPEA2 perform well on
DMOP1-DMOP8 and are followed by MOPSO and SPEA2. On DMOP6, the MIGD values of MEE-SPEA2 and MEE-MOPSO
are 0.07908 and 0.12031, respectively. They are all smaller than 0.23535 of MOPSO and 0.37779 of SPEA2. Therefore,
MEE-MOPSO and MEE-SPEA2 have a better capability in distribution and convergence than the other two algorithms.
Although there is no significantly different in terms of MIGD and MHV metrics among the four algorithms on DMOP5 and
DMOP7, MEE-MOPSO and MEE-SPEA2 gain the lowest MIGD values. The reason may lie in that the presented response strat-
egy is not very sensitive to the situation that the true Pareto-optimal sets of DMOP5 and DMOP7 change are not influenced
by the number of changing decision variables.
4.9. Comparison with MOEA/DVA and LMEA

In this subsection, the presented algorithm, MEE-NSGA-II, is compared with MOEA/DVA [22] and LMEA [21] on the eight
benchmark problems, DMOP1-DMOP8, in which the maximum number of decision variables is set to 1010
ðS ¼ 1000; s ¼ 10Þ, and the initial number of decision variable, D, is 1005, respectively. During the experiments, the maxi-
mum number of function evaluations is set to 20,000,000 for problems with 1000 decision variables when the environment
changes. Table 5 shows the values of MIGD and MHV in terms of the mean and standard deviation achieved by the compar-
ison algorithms on the eight problems. As reported in Table 5, MEE-NSGA-II is significantly better than MOEA/DVA on all the
eight problems but DMOP4 in terms of MIGD and MHV. Taking DMOP6 as an example, the MIGD value of MEE-NSGA-II is
0.1881, which is clearly smaller than that of MOEA/DVA, 0.4964. Although MOEA/DVA obtains the maximum value of
MHV on DMOP1, there is no significant difference between MOEA/DVA (0.4799) and MEE-NSGA-II (0.4798). Therefore,
MEE-NSGA-II has better performance in convergence and diversity than MOEA/DVA on DMOP1-DMOP8 except DMOP4.
With respect to the comparison between LMEA and MEE-NSGA-II, LMEA is significantly superior to MEE-NSGA-II on DMOP5
and DMOP6 in terms of MIGD. However, it is significantly inferior to MEE-NSGA-II on DMOP1, DMOP2 and DMOP3, and they
have the same performance in convergence and distribution on DMOP7 and DMOP8. MEE-NSGA-II is slightly better than
LMEA on DMOP4. Therefore, MEE-NSGA-II has better performance than LMEA. In summary, we focus mainly on DMOPs
in this paper, suggesting that rapidly tracking the time-dependent PF of an optimization problem is of necessity, which
requires that the obtained solutions to a DMOP may be not optimal. The existing methods, such as MOEA/DVA and LMEA,
consume plenty of function evaluations when re-investigating the correlation between decision variables, and further adjust
groups when the optimization problem changes, suggesting that they have difficulties in meeting the requirements of
DMOPs. In contrast, the proposed algorithm saves a large number of function evaluations, leading to more evaluations for
improving the performance in convergence and distribution. In addition, information provided by sub-populations has been
fully taken advantage of and the initial groups are just locally adjusted as the optimization problem changes. From the above
viewpoints, the proposed grouping method is more suitable for MOPs with changing decision variables.
5. Application in a Multi-period Portfolio Selection Problem

In this section, we consider a multi-period portfolio selection problem in emerging markets [48]. To help investors to
make competent decisions, we formulate the problem with dynamics as a bi-objective optimization model with changing
decision variables. In the formulated model, the expected return rate and risk loss rate at the tth period are represented
as follows.
Table 5
The values of MIGD and MHV obtained by MOEA/DVA, LMEA and MEE-NSGA-II.

Problem MIGD MHV

MOEA/DVA LMEA MEE-NSGA-II MOEA/DVA LMEA MEE-NSGA-II

DMOP1 0.0408 0.0414 0.0394 0.4799 0.4797 0.4798
(0.0002)y (0.0002)y (0.0002) (0.0018) (0.0012) (0.0013)

DMOP2 0.0406 0.0407 0.0393 0.2158 0.2145 0.2165
(0.0003) (0.0002) (0.0001) (0.0004)y (0.0006)y (0.0000)

DMOP3 0.0452 0.0453 0.0426 0.4329 0.4338 0.4432
(0.0004)y (0.0002)y (0.0001) (0.0002)y (0.0001)y (0.0001)

DMOP4 0.0426 0.0455 0.0444 0.1804 0.1773 0.1796
(0.0001) (0.0001)y (0.0003)y (0.0001) (0.0006)y (0.0004)y

DMOP5 0.8173 0.2686 0.3102 0.0156 0.0360 0.0394
(0.0105)y (0.0040) (0.0098)y (0.0009)y (0.0003)y (0.0004)

DMOP6 0.4964 0.1232 0.1881 0.0235 0.0478 0.0395
(0.0226)y (0.0049) (0.0041)y (0.0018)y (0.0007) (0.0011)y

DMOP7 0.1336 0.1271 0.1244 0.4898 0.5154 0.5159
(0.0017)y (0.0017) (0.0006) (0.0097)y (0.0011) (0.0018)

DMOP8 0.1798 0.1703 0.1710 0.4015 0.4289 0.4266
(0.0012)y (0.0012) (0.0020) (0.0026)y (0.0016) (0.0017)
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Table 6
Comparisons of different algorithms on the portfolio selection problem.

Metric NSGA-II SPEA2 MOEA/DVA LMEA MEE-NSGA-II

MHV 0.0073 0.0072 0.0070 0.0072 0.0077
(std.) (0.00020)y (0.00017)y (0.00017)y (0.00018)y (0.00013)
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RðxðtÞ; rðtÞÞ ¼ Pn
i¼1rt;ixt;i �

Pn
i¼1at;i xt;i � xt�1;i

�� ��þ rt;0xt;0, QðxðtÞ; qðtÞÞ ¼ Pn
i¼1qt;ixt;i.

Therefore, the bi-objective optimization model can be formulated as
minð�RðxðtÞ; rðtÞÞ;QðxðtÞ; qðtÞÞÞ

s:t:
Xn
i¼1

xi;t ¼ 1; xi;t P 0; t ¼ 1;2; . . . ; T:
ð9Þ
where rðtÞ; qðtÞ; at;i are parameters, whose meaning and setting can be found in [48], and xt;i refers to the investment propor-
tion of the ith security at the tth period.

The proposed algorithm, MEE-NSGA-II, and the comparative ones are employed to handle the multi-period portfolio
selection problem. When solving the above problem, the number of securities randomly increases or decreases at each
new period. Each algorithm is run 20 times independently. We record these results and calculate their mean. The reference
point is set to (0, 0.2) when computing hyper-volume. The MHV value of each comparative algorithm is listed in Table 6. In
addition, we show the average HV value obtained by NSGA-II, SPEA2, MOEA/DVA, LMEA, and MEE-NSGA-II over 20 runs ver-
sus time, in Fig. 4, to intuitively demonstrate the advantages of the proposed algorithm.

Table 6 indicates that MEE-NSGA-II achieves the best MHV value among these algorithms. In addition, there is a signif-
icant difference between MEE-NSGA-II and NSGA-II, SPEA2, MOEA/DVA, and LMEA. Moreover, MEE-NSGA-II has a smaller
standard deviation than NSGA-II, MOEA/DVA, and LMEA.

From Fig. 4, we can obtain that although the proposed algorithm, MEE-NSGA-II, does not achieve the best HV value at
t = 0, there is a very slight difference between MEE-NSGA-II and the comparative algorithms. Furthermore, MEE-NSGA-II
achieved the best HV values among all algorithms from t ¼ 1 to t ¼ 10, indicating that MEE-NSGA-II has the best perfor-
mance in terms of convergence and distribution. From the above analysis, we can conclude that the proposed algorithm
can achieve a Pareto optimal set with good performance in convergence and diversity. Furthermore, it exhibits stable per-
formance in rapidly tracking time-variant Pareto fronts.
6. Conclusion

To solve a DMOP with varying decision variables, we presented a CCEA, termed MEE-NSGA-II, based on dynamically clas-
sifying variables according to the MEE. In MEE-NSGA-II, a complex DMOP is disintegrated into several relatively simple sub-
problems by classifying variables, resulting in reduced computational complexity. In contrast to other decomposition meth-
ods, the proposed MEE-based method guarantees that variables with high dependency are assigned to the same group, with
the purpose of efficiently evolving each sub-population. In addition, a method of responding to varying decision variables is
proposed for MEE-NSGA-II, which uses different numbers of solutions in the archive to initialize sub-populations corre-
sponding to different groups, and a clustering-based method of selecting representative solutions. These two strategies
enhance the proposed algorithm for tracking moving PF.
Fig. 4. Average of HV over 20 runs versus time on the portfolio selection problem.
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To investigate the performance of MEE-NSGA-II, we applied it to tackle eight benchmark optimization problems, DMOP1-
DMOP8, in comparison with five popular algorithms. The experimental results show that MEE-NSGA-II is highly competitive
among the comparative algorithms for most problems. Furthermore, we also applied the proposed algorithm in a multi-
period portfolio selection problem, and obtained stable performance in rapidly tracking time-variant Pareto fronts.

It is worth mentioning that we only consider an optimization problemwith increasing or decreasing one decision variable
at a time in this study. However, there may be dynamic optimization problems with other characteristics, such as the dele-
tion of more than one decision variable and simultaneous addition of other variables. In addition, the frequency of the
change and the additional/reduced number of decision variables in the above two scenarios may be irregular. To address
these problems, new efficient methods are required, which will be the focus of our future work.
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